Encountering the error “TypeError: no numeric data to plot” in Python can be frustrating, especially when you know numeric data exists in your DataFrame. This error typically occurs when the data you intend to plot is not recognized as numeric due to incorrect data types, such as strings instead of integers or floats. Common scenarios include reading data from CSV files where numeric columns are mistakenly interpreted as strings. This error can significantly impact data visualization tasks by preventing the creation of plots, thus hindering data analysis and insights.
The error TypeError: no numeric data to plot
in Python typically occurs when you attempt to plot data from a pandas DataFrame, but the data is not recognized as numeric. Here are the main causes and how data types in pandas DataFrames can lead to this error:
Non-Numeric Data Types:
Empty DataFrame:
Incorrect Data Type Conversion:
astype(float)
or pd.to_numeric()
), pandas will not recognize it as numeric.Consider a DataFrame where numeric values are stored as strings:
import pandas as pd
df = pd.DataFrame({
'year': [2011, 2014, 2018, 2012, 2025],
'net_worth': ['5000', '10000', '15000', '10000', '20000'],
'gdp_per_capita': ['10000', '12000', '15000', '20000', '25000']
})
# Attempting to plot will raise the error
df[['net_worth', 'gdp_per_capita']].plot() # TypeError: no numeric data to plot
Convert the columns to numeric types:
df['net_worth'] = df['net_worth'].astype(float)
df['gdp_per_capita'] = df['gdp_per_capita'].astype(float)
# Now plotting will work
df[['net_worth', 'gdp_per_capita']].plot()
By ensuring that all columns intended for plotting are of a numeric type, you can avoid this error.
Check Data Types:
import pandas as pd
# Sample DataFrame
df = pd.DataFrame({
'team': ['A', 'A', 'B', 'B', 'B'],
'points': ['5', '7', '7', '9', '12'],
'rebounds': ['11', '8', '10', '6', '6'],
'blocks': ['4', '7', '7', '6', '5']
})
# Check data types
print(df.dtypes)
Identify Non-Numeric Columns:
non_numeric_columns = df.select_dtypes(exclude=['number']).columns
print(non_numeric_columns)
Convert Columns to Numeric:
df['points'] = pd.to_numeric(df['points'], errors='coerce')
df['rebounds'] = pd.to_numeric(df['rebounds'], errors='coerce')
df['blocks'] = pd.to_numeric(df['blocks'], errors='coerce')
# Verify conversion
print(df.dtypes)
These steps will help you identify and convert non-numeric data in your DataFrame.
To resolve the TypeError: no numeric data to plot
in Python when using pandas, you need to ensure that the columns you want to plot are of numeric types. Here’s how you can convert columns to numeric types using astype()
and to_numeric()
:
astype()
import pandas as pd
# Sample DataFrame
df = pd.DataFrame({
'team': ['A', 'A', 'B', 'B', 'B'],
'points': ['5', '7', '7', '9', '12'],
'rebounds': ['11', '8', '10', '6', '6'],
'blocks': ['4', '7', '7', '6', '5']
})
# Convert columns to numeric types
df['points'] = df['points'].astype(float)
df['rebounds'] = df['rebounds'].astype(float)
df['blocks'] = df['blocks'].astype(float)
# Verify data types
print(df.dtypes)
to_numeric()
import pandas as pd
# Sample DataFrame
df = pd.DataFrame({
'team': ['A', 'A', 'B', 'B', 'B'],
'points': ['5', '7', '7', '9', '12'],
'rebounds': ['11', '8', '10', '6', '6'],
'blocks': ['4', '7', '7', '6', '5']
})
# Convert columns to numeric types
df['points'] = pd.to_numeric(df['points'])
df['rebounds'] = pd.to_numeric(df['rebounds'])
df['blocks'] = pd.to_numeric(df['blocks'])
# Verify data types
print(df.dtypes)
Both methods will convert the specified columns to numeric types, allowing you to plot the data without encountering the TypeError
.
To verify that data conversion has been successful in resolving the ‘TypeError: no numeric data to plot’ in Python, you can use the following methods:
Check Data Types Using dtypes
:
import pandas as pd
df = pd.DataFrame({
'year': [2011, 2014, 2018, 2012, 2025],
'net_worth': ['5000', '10000', '15000', '10000', '20000'],
'gdp_per_capita': ['10000', '12000', '15000', '20000', '25000'],
})
# Convert columns to numeric
df['net_worth'] = df['net_worth'].astype(float)
df['gdp_per_capita'] = df['gdp_per_capita'].astype(float)
# Verify data types
print(df.dtypes)
Use pd.to_numeric
with errors='coerce'
:
import pandas as pd
df = pd.DataFrame({
'year': [2011, 2014, 2018, 2012, 2025],
'net_worth': ['5000', '10000', '15000', '10000', '20000'],
'gdp_per_capita': ['10000', '12000', '15000', '20000', '25000'],
})
# Convert columns to numeric
df['net_worth'] = pd.to_numeric(df['net_worth'], errors='coerce')
df['gdp_per_capita'] = pd.to_numeric(df['gdp_per_capita'], errors='coerce')
# Verify data types
print(df.dtypes)
Check for Non-Numeric Values:
import pandas as pd
df = pd.DataFrame({
'year': [2011, 2014, 2018, 2012, 2025],
'net_worth': ['5000', '10000', '15000', '10000', '20000'],
'gdp_per_capita': ['10000', '12000', '15000', '20000', '25000'],
})
# Convert columns to numeric
df['net_worth'] = pd.to_numeric(df['net_worth'], errors='coerce')
df['gdp_per_capita'] = pd.to_numeric(df['gdp_per_capita'], errors='coerce')
# Check for non-numeric values
print(df[df[['net_worth', 'gdp_per_capita']].isnull().any(axis=1)])
These methods ensure that your data is correctly converted to numeric types and ready for plotting.
To resolve the TypeError: no numeric data to plot
in Python and plot your data, follow these steps:
Ensure Data is Numeric: Convert your DataFrame columns to numeric types using astype()
or to_numeric()
.
Plot the Data: Use matplotlib
or pandas
plotting functions.
Here’s a sample code:
import pandas as pd
import matplotlib.pyplot as plt
# Sample DataFrame with non-numeric data
df = pd.DataFrame({
'year': [2011, 2014, 2018, 2012, 2025],
'net_worth': ['5000', '10000', '15000', '10000', '20000'],
'gdp_per_capita': ['10000', '12000', '15000', '20000', '25000']
})
# Convert columns to numeric
df['net_worth'] = df['net_worth'].astype(float)
df['gdp_per_capita'] = df['gdp_per_capita'].astype(float)
# Plotting using pandas
df.plot(x='year', y=['net_worth', 'gdp_per_capita'], kind='line')
plt.show()
This code converts the net_worth
and gdp_per_capita
columns to numeric types and then plots them.
Follow these steps:
Data type management is crucial in pandas for successful data visualization. Failing to convert non-numeric values can lead to errors and incorrect results. By following these steps, you’ll be able to resolve the ‘TypeError: no numeric data to plot’ issue and create accurate visualizations of your data.